Российская Федерация муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 4 п. Добровольск

Краснознаменского района Калининградской области

238743 Калининградская область, Краснознаменский район, п.Добровольск, ул. Юности, 9 Телефон / факс 8-401-64-2-72-53, e-mail: r39.64obr4@mail.ru

Принята на заседании методического (педагогического) совета от « 03 » августа 2021 г Протокол № 1

«Утверждаю»

Директор МБОУСОШ № 4

п. Добровольск Велевичене А.А.

« 03» августа 2021 г

Дополнительная общеобразовательная общеразвивающая программа

технической направленности « КОНСТРУИРОВАНИЕ И РОБОТОТЕХНИКА. LEGO WE DO»

Возраст обучающихся: 7 – 11 лет

Срок реализации: 1 года

Разработчик: учитель начальных классов Григене И.Н.

первая категория

п. Добровольск 2021г.

1. Пояснительная записка

Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Конструирование и робототехника.LEGO WeDo» имеет техническую направленность.

Программа ориентирована на развитие технических и творческих способностей и умений учащихся, организацию научно-исследовательской деятельности, профессионального самоопределения учащихся.

Актуальность программы

Развитие робототехники в настоящее время включено в перечень приоритетных направлений технологического развития в сфере информационных технологий, которые определены Правительством в рамках «Стратегии развития отрасли информационных технологий в РФ на 2014—2020 годы и на перспективу до 2025 года». Важным условием успешной подготовки инженерно-технических кадров в рамках обозначенной стратегии развития является внедрение инженерно-технического образования в систему воспитания школьников и даже дошкольников. Развитие образовательной робототехники в России сегодня идет в двух направлениях: в рамках общей и дополнительной системы образования. Образовательная робототехника позволяет вовлечь в процесс технического творчества детей, начиная с младшего школьного возраста, дает возможность учащимся создавать инновации своими руками, и заложить основы успешного освоения профессии инженера в будущем.

В настоящее время в образовании применяют различные робототехнические одним из которых является конструктор LEGO WeDo. Работа комплексы, образовательными конструкторами LEGO WeDo позволяет учащимся в форме игры исследовать основы механики, физики и программирования. Разработка, сборка и построение алгоритма поведения модели позволяет учащимся самостоятельно освоить целый набор знаний из разных областей, в том числе робототехники, электроники, программирования, что способствует повышению интереса быстроразвивающейся науке робототехнике.

Отличительные особенности программы

Образовательная программа рассчитана на один год обучения.

Программа состоит из трех основных разделов:

- «Я конструирую»
- «Я программирую»
- «Я создаю»

Каждый раздел соответствует определенному этапу в развитии учащихся.

На первом этапе обучения необходимо:

- познакомить учащихся с различными видами соединения деталей;
- познакомить учащихся с принципами работы простейших механизмов и примерами их использования в простейших моделях;
- выработать умение читать технологическую карту заданной модели;
- выработать умение для готовой модели составлять технический паспорт, включающий в себя описание работы механизма;
- взаимодействовать в команде;

• познакомить учащихся с понятием программы и принципом программного управления моделью.

На этом уровне учащиеся приобретают необходимые знания, умения, навыки по основам конструирования, развивают навыки общения и взаимодействия в малой группе/паре.

На следующем этапе обучения полученные знания, умения, навыки закрепляются и расширяются, повышается сложность конструируемых моделей за счет сочетания нескольких видов механизмов и усложняется поведение модели. Основное внимание уделяется разработке и модификации основного алгоритма управления моделью.

На этом этапе обучения:

- учащиеся сочетают в одной модели сразу несколько изученных простейших механизмов; исследуют, какое влияние на поведение модели оказывает изменение ее конструкции: заменяют детали, проводят расчеты, измерения, оценки возможностей модели, создают отчеты, проводят презентации, придумывают сюжеты, пишут сценарии и разыгрывают спектакли, задействуя в них свои модели;
- происходит закрепление навыков чтения и составления технического паспорта и технологической карты, включающие в себя описание работы механизма;
- учащиеся знакомятся с основами алгоритмизации, изучают способы реализации основных алгоритмических конструкций в среде программирования LEGO.

На последнем этапе обучения упор делается на развитие технического творчества учащихся посредством проектирования и создания учащимися собственных моделей, участия в выставках творческих проектов. При разработке проектов у школьников формируются следующие умения:

- умение составлять технологическую карту своей модели;
- умение продумать модель поведения робота, составить алгоритм и реализовать его в среде программирования LEGO;
- умение анализировать модель, выявлять недостатки в ее конструкции и программе и устранять их;
- умение искать перспективы развития и практического применения модели.

Вышеперечисленные этапы соответствуют концентрическому способу изложения материала, который предполагает периодическое возвращение учащихся к одному и тому же учебному материалу для все более детального и глубокого его освоения.

Методы обучения

Объяснительно-иллюстративный метод обучения

Учащиеся получают знания в ходе беседы, объяснения, дискуссии, из учебной или методической литературы, через экранное пособие в "готовом" виде.

- Репродуктивный метод обучения Деятельность обучаемых носит алгоритмический характер, выполняется по инструкциям, предписаниям, правилам в аналогичных, сходных с показанным образцом ситуациях.
- Метод проблемного изложения в обучении Прежде чем излагать материал, перед учащимися необходимо поставить проблему, сформулировать познавательную задачу, а затем, раскрывая систему доказательств, сравнивая точки зрения, различные подходы, показать способ решения поставленной задачи. Учащиеся становятся свидетелями и соучастниками научного поиска.
- Частичнопоисковый, или эвристический метод обучения заключается в организации активного поиска решения выдвинутых в

обучении (или самостоятельно сформулированных) познавательных задач в ходе подготовки и реализации творческих проектов.

• Исследовательский метод обучения

обучаемые самостоятельно изучают основные характеристики простых механизмов и датчиков, работающих в модели, включая рычаги, зубчатые и ременные передачи, ведут наблюдения и измерения и выполняют другие действия поискового характера. Инициатива, самостоятельность, творческий поиск проявляются в исследовательской деятельности наиболее полно.

Адресат программы

Дополнительная образовательная программа «Конструирование

и робототехника. LEGO WeDo » предназначена на детей 7 -11 лет. .

Объём и срок освоения программы

Срок освоения программы – 4 года

На полное освоение программы требуется 35 часов. (1 час в неделю)

Форма обучения

Форма обучения – очная. возможно использование дистанционных технологий.

Особенности организации образовательного процесса

Набор в группы свободный. Формы проведения занятий подбираются с учетом цели и задач, познавательных интересов и индивидуальных возможностей обучающихся, специфики содержания образовательной программы и возраста воспитанников: рассказ, беседа, дискуссия, учебная познавательная игра, мозговой штурм, и др.

Выполнение образовательной программы предполагает активное участие в олимпиадах, конкурсах, выставках ученического технического творчества.

Состав группы 10 -15 человек.

Режим занятий, периодичность и продолжительность занятий.

Общее количество часов в год 35 часов. Продолжительность занятий исчисляется в академических часах – 45 минут. Занятия проводятся 1 раз в неделю.

Педагогическая целесообразность.

Программа «Конструирование и робототехника.LEGO WeDo 2.0» составлена таким образом, чтобы учащиеся смогли овладеть комплексом знаний по организации исследовательской, изобретательной деятельности, выполнении проектной работы, познакомиться с требованиями, предъявляемыми к оформлению и публичному представлению результатов своего труда.

Практическая значимость

Содержание данной программы построена таким образом, что обучающиеся под руководством педагога смогут не только создавать конструкции ,следуя пошаговым инструкциям, но и проводя исследования и изобретательство, узнавать новое об окружающем их мире.

Ведущие теоретические идеи

Ведущая идея данной программы — создание современной практико — ориентированной высокотехнологичной образовательной среды, позволяющей эффективно

реализовать проектно — конструкторскую и экспериментально — исследовательскую деятельность обучающихся в группах, получать новые образовательные результаты и инновационные продукты.

Цель программы: развитие творческих и научно-технических компетенций обучающихся в неразрывном единстве с воспитанием коммуникативных качеств и целенаправленности личности через систему практико-ориентированных групповых занятий, консультаций и самостоятельной деятельности воспитанников по созданию робототехнических устройств, решающих поставленные задачи.

Основными задачами программы являются:

- ознакомление с основными принципами механики;
- развитие умения работать по предложенным инструкциям;
- развитие умения творчески подходить к решению задачи;
- развитие умения довести решение задачи до работающей модели;

развитие умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Принцип отбора содержания:

- -принцип единства развития обучения и развития;
- принцип доступности;
- принцип систематичности и последовательности;
- принцип наглядности;
- принцип комплексного подхода;
- принцип взаимодействия и сотрудничества.

Основные формы и методы образовательной деятельности:

- конструирование, программирование, творческие исследования, презентация своих моделей, соревнования между командами;
- словесный (беседа, рассказ, инструктаж, объяснение);
- наглядный (показ, видео просмотр, работа по инструкции);
- практический (сборка моделей, составление программ);
- репродуктивный метод (восприятие и усвоение готовой информации);
- частично-поисковый (выполнение вариативных заданий);
- исследовательский метод;
- метод стимулирования и мотивации деятельности (игровые эмоциональные ситуации, похвала, поощрение).

Планируемые результаты

Программа обеспечивает достижение учащимися следующих личностных, метапредметных и предметных результатов.

Личностные:

- формирование уважительного отношения к иному мнению;
- •принятие и освоение социальной роли обучающегося, развитие мотивов учебной деятельности и формирование личностного смысла учения;
- •развитие навыков сотрудничества со взрослыми и сверстниками в разных ситуациях, умения не создавать конфликтов и находить выходы из спорных ситуаций;
- •наличие мотивации к творческому труду, работе на результат, бережному отношению к материальным и духовным ценностям.

Метапредметные:

- •овладение способностью принимать и сохранять цели и задачи учебной деятельности, поиска средств её осуществления;
- •освоение способов решения проблем творческого и поискового характера;
- •формирование умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями её реализации; определять наиболее эффективные способы достижения результата;
- •формирование умения понимать причины успеха, неуспеха учебной деятельности и способности конструктивно действовать даже в ситуациях неуспеха;
- •освоение начальных форм познавательной и личностной рефлексии;
- •использование знаково-символических средств представления информации для

создания моделей изучаемых объектов и процессов, схем решения учебных и практических задач;

умение работать в материальной и информационной среде начального общего образования (в том числе с учебными моделями) в соответствии с содержанием конкретного учебного предмета.

Предметные:

- •использование приобретённых математических знаний для описания и объяснения окружающих предметов, процессов, явлений, а также для оценки их количественных и пространственных отношений;
- овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи, основами счёта, измерения, прикидки результата и его оценки, наглядного представления данных в разной форме (таблицы, схемы, диаграммы), записи и выполнения алгоритмов;
- •умения выполнять и устно строить алгоритмы и стратегии в игре, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, представлять, анализировать и интерпретировать данные;
- •приобретение первоначальных навыков работы на компьютере.

Механизм оценивания образовательных результатов.

- 1. Уровень теоретических знаний.
- Низкий уровень. Обучающийся знает фрагментарно изученный материал. Изложение материала сбивчивое, требующее корректировки наводящими вопросами.
- Средний уровень. Обучающийся знает изученный материал, но для полного раскрытия темы требуются дополнительные вопросы.
- Высокий уровень. Обучающийся знает изученный материал. Может дать логически выдержанный ответ, демонстрирующий полное владение материалом.
 - 2. Уровень практических навыков и умений.

Работа с инструментами, техника безопасности.

- Низкий уровень. Требуется контроль педагога за выполнением правил по технике безопасности.
- Средний уровень. Требуется периодическое напоминание о том, как работать с инструментами.
 - Высокий уровень. Четко и безопасно работает инструментами.

Способность изготовления конструкций.

- Низкий уровень. Не может изготовить конструкцию по схеме без помощи педагога.
- Средний уровень. Может изготовить конструкцию по схемам при подсказке педагога.
- Высокий уровень. Способен самостоятельно изготовить конструкцию по заданным схемам.

Степень самостоятельности изготовления конструкции

- Низкий уровень. Требуется постоянные пояснения педагога при сборке и программированию конструкции.
- Средний уровень. Нуждается в пояснении последовательности работы, но способен после объяснения к самостоятельным действиям.
- Высокий уровень. Самостоятельно выполняет операции при сборке и программированию конструкции.

Содержание программы 35 часов (1 час в неделю)

Введение (3 ч.)

Правила поведения и ТБ в кабинете информатики и при работе с конструкторами. Роботы в нашей жизни. Понятие. Назначение. Что такое робототехника? Знакомство с конструктором Лего. Что входит в Конструктор ПервоРобот LEGO WeDo 2.0. Организация рабочего места. Знакомство с программным обеспечением конструктора LEGO WeDo 2.0

Конструирование (12 ч.) Изучение механизмов конструктора LEGO WeDo 2.0 Проект «Первые шаги», часть А. Майло, научный вездеход. Тяга (действие уравновешенных и неуравновешенных сил на движение объекта.). Скорость (изучение факторов, которые могут увеличить скорость автомобиля). Прочные конструкции (симулятор землетрясения). Метамарфоз лягушки (моделирование метамарфоза лягушки). Растения и опылители (демонстрация взаимосвязи между цветком и опылителем). Защита от наводнения (разработка автоматического паводкового шлюза). Спасательный десант (модель устройства, снижающего отрицательное воздействие на среду). Сортировка отходов (разработка устройства для сортировки объектов).

Программирование (12 ч.) Проект «Первые шаги», части Б, С, Д. Датчик перемещения Майло. Датчик наклона Майло. Тяга (действие уравновешенных и неуравновешенных сил на движение объекта.). Скорость (изучение факторов, которые могут увеличить скорость автомобиля). Прочные конструкции (симулятор землетрясения). Метамарфоз лягушки (моделирование метамарфоза лягушки). Растения и опылители (демонстрация взаимосвязи между цветком и опылителем). Защита от наводнения (разработка автоматического паводкового шлюза). Спасательный десант (модель устройства, снижающего отрицательное воздействие на среду).

Проектная деятельность в группах (6 ч.) Язык животных (проект с открытым решением). Исследование космоса (проект с открытым решением). Экстремальная среда обитания (проект с открытым решением). Очистка океана (проект с открытым решением). Перемещение предметов (проект с открытым решением) Разработка собственных моделей в группах. Выработка и утверждение темы, в рамках которой будет реализовываться проект.

Свободное моделирование (2 ч.) Соревнования. Ролевая игра.

Тематическое планирование

No	Наименование разделов,	Всего	Количество часов	
Π/Π	блоков, тем	(час)	теория	практика
1.	Введение	3	3	
2.	Конструирование	12	1	11
3.	Программирование	12	1	11
4.	Проектная деятельность в	6		6
	группах			
5.	Свободное моделирование	2		2

Календарно-тематическое планирование

№ п/п	Дата	Темы занятий.	Кол-во часов	Форма занятий
1.		Техника безопасности при работе с конструктором. Роботы в нашей жизни. Что такое робототехника?	1	Инструктаж по ТБ
2.		Знакомство с конструктором Лего. Организация рабочего места.	1	Беседа
3.		Знакомство с программным обеспечением конструктора LEGO WeDo 2.0	1	Беседа
4.		Изучение механизмов конструктора LEGO WeDo 2.0	1	Практикум
5.		Проект «Первые шаги». Майло, научный вездеход	1	Практикум
6.		Проект «Первые шаги». Датчик перемещения и датчик наклона Майло.	1	Практикум
7.		Действие уравновешенных и неуравновешенных сил на движение объекта.	1	Исследование
8.		Действие уравновешенных и неуравновешенных сил на движение объекта.	1	Соревнование
9.		Изучение факторов, которые могут увеличить скорость автомобиля.	1	Исследование
10.		Изучение факторов, которые могут увеличить скорость автомобиля.	1	Практикум
11.		Прочные конструкции (симулятор землетрясения).	1	Исследование
12.		Прочные конструкции (симулятор землетрясения).	1	Консультация
13.		Моделирование метамарфоза лягушки.	1	Исследование
14.		Метамарфоз лягушки	1	Практикум

15.	Растения и опылители.	1	Практикум
16.	Демонстрация взаимосвязи между	1	Ролевая игра
	цветком и опылителем.		
17.	Разработка автоматического паводкового	1	Практикум
	шлюза.		
18.	Защита от наводнения	1	Практикум
19.	модель устройства, снижающего	1	Практикум
	отрицательное воздействие на среду.		
20.	Спасательный десант.	1	Практикум
21.	Разработка устройства для сортировки	1	Проектная
	объектов.		деятельность
22.	Сортировка отходов.	1	Ролевая игра
23.	Проект с открытым решением.	1	Практикум
24.	Язык животных.	1	Проектная
			деятельность
25.	Исследование космоса	1	Консультация
26.	Исследование космоса (проект с	1	Проектная
	открытым решением).		деятельность
27.	Экстремальная среда обитания	1	Практикум
28.	Экстремальная среда обитания (проект с	1	Проектная
	открытым решением).		деятельность
29.	Очистка океана.	1	Практикум
30.	Очистка океана (проект с открытым	1	Проектная
	решением).		деятельность
31.	Перемещение предметов.	1	Практикум
32.	Перемещение предметов (проект с	1	Проектная
	открытым решением).		деятельность
33.	Мой собственный проект	1	Выставка
34.	Мой собственный проект	1	Соревнование
35.	Свободное моделирование	1	
	Итого:	35	

Календарный учебный график

No	Режим деятельности	Дополнительная общеобразовательная общеразвивающая программа технической направленности « КОНСТРУИРОВАНИЕ И РОБОТОТЕХНИКА. LEGO WE DO»
1	Начало учебного года	01 сентября
2	Продолжительность учебного периода на каждом году обучения	35 недель
3	Продолжительность учебной недели	5 дней
4	Периодичность учебных занятий	1 раз в неделю

5	Количество занятий на каждом году	35 занятий
	обучения	
6	Количество часов	35 часов
7	Окончание учебного года	31 мая
8	Период реализации программы	01.09.2021 г. – 31. 05. 2022 г.

Организационно – педагогические условия реализации программы Кадровое обеспечение.

Программу реализует педагог дополнительного образования с средне- специальным педагогическим образованием, соответствующий требованиям профессионального стандарта педагога дополнительного образования.

Формы подведения итогов реализации программы

Предусматриваются различные формы подведения итогов реализации образовательной программы: выставка, соревнование, внутригрупповой конкурс, презентация проектов обучающихся, участие в олимпиадах, соревнованиях, учебноисследовательских конференциях.

Проект — это самостоятельная индивидуальная или групповая деятельность учащихся, рассматриваемая как промежуточная или итоговая работа по данному курсу, включающая в себя разработку технологической карты, составление технического паспорта, сборку и презентацию собственной модели на заданную тему.

Итоговые работы должны быть представлены на выставке технического творчества, что дает возможность учащимся оценить значимость своей деятельности, услышать и проанализировать отзывы со стороны сверстников и взрослых. Каждый проект осуществляется под руководством педагога, который оказывает помощь в определении темы и разработке структуры проекта, дает рекомендации по подготовке, выбору средств проектирования, обсуждает этапы его реализации. Роль педагога сводится к оказанию методической помощи, а каждый обучающийся учится работать самостоятельно, получать новые знания и использовать уже имеющиеся, творчески подходить к выполнению заданий и представлять свои работы.

Ресурсное обеспечение программы

Для достижения прогнозируемых в программе образовательных результатов необходимы следующие ресурсные компоненты:

Методическое обеспечение дополнительной образовательной программы

Обеспечение программы предусматривает наличие следующих методических видов продукции:

- инструкции по сборке (в электронном виде CD)
- книга для учителя (в электронном виде CD)
- экранные видео лекции, видео ролики;
- информационные материалы на сайте, посвященном данной дополнительной образовательной программе;
- мультимедийные интерактивные домашние работы, выдаваемые обучающимся на каждом занятии;

По результатам работ всей группы будет создаваться мультимедийное интерактивное издание, которое можно будет использовать не только в качестве отчетности о проделанной работе, но и как учебный материал для следующих групп

обучающихся.

Дидактическое обеспечение

Дидактическое обеспечение программы представлено конспектами занятий и презентациями к ним.

Материально-техническое обеспечение программы

- Компьютерный класс.
- Наборы конструкторов:
- Программное обеспечение LEGO WeDo 2.0, комплект занятий, книга для учителя.
- конструкторы ЛЕГО, технологические карты, книга с инструкциями; компьютер, проектор, экран; CD ПервоРоботLEGO "WeDo2.0".

Материально-техническое и учебно-методическое обеспечение программы

- 1. Конструктор LegoWedo2.0- 10 шт.
- 2. Программное обеспечение LEGO® WeDo2.0TM (LEGO Education WeDo Software)
- 3. Базовый набор WeDo 2.0 45300. Комплект заданий 10 шт.
- 4. Книга для учителя Lego Wedo 2.0 1 шт.
- 5. Проектор -1 шт.
- 6. Экран 1шт.
- 7. Планшет Lenowe 10 шт.
- 8. Компьютер учителя -1 шт.
- 9. Стеллаж полузакрытый 1 шт.

Методическое обеспечение

Интернет-ресурсы:

- 1. http://learning.9151394.ru/course/view.php?id=17
- 2. http://do.rkc-74.ru/course/view.php?id=13
- 3. http://robotclubchel.blogspot.com/
- 4. http://legomet.blogspot.com/
- 5. http://9151394.ru/?fuseaction=proj.lego
- 6. http://9151394.ru/index.php?fuseaction=konkurs.konkurs
- 7. http://www.lego.com/education/
- 8. http://www.wroboto.org/
- 9. http://www.roboclub.ru/
- 10. http://robosport.ru/
- 11. http://lego.rkc-74.ru/
- 12. <u>http://legoclab.pbwiki.com/</u>
- 13. http://www.int-edu.ru/
- 14. http://httpwwwbloggercomprofile179964.blogspot.com/

Список литературы

- 1. ПервоРобот LEGO WeDo. Книга для учителя. LEGO Group, 2009, 175 с., ил.
- 2. Первые механизмы. Книга для учителя. LEGO Group, 2012, 81с., ил.
- 3. Книга «Образовательная робототехника LEGO WeDo». Рабочая тетрадь.
- 4. Рабочая тетрадь № 1. «Животный мир Robokids. Haceкомые».
 - 5. Схемы сборки «Животный мир Robokids. Насекомые».
- 6. Рабочая тетрадь № 2. «Животный мир Robokids. Животные».
- 7. Схемы сборки «Животный мир Robokids. Животные».
- 8. Техника/ П. Кент; Пер. с англ. А. В. Мясникова. М.: РОСМЭН-ПРЕСС, 2013. – 48 с.: ил. – (Большая энциклопедия знаний)
- 9. Изобретения/ Гленн Мёрфи; пер.с англ. И. Е. Сацевича. Москва:
- ACT, 2013. 64c.: ил. (Моя первая энциклопедия).
- 10. Большая энциклопедия открытий и изобретений/Науч.-поп. издание для детей. М.: ЗАО «РОСМЭН-ПРЕСС», 2007. 224 с.
- 11. Моя первая книга о технике: Науч.-поп. издание для детей. М.: ЗАО «РОСМЭН-ПРЕСС», 2005.-95 с., ил.

- 12 Робототехника для детей и родителей С.А.Филиппов. СПб: Наука, 2010 13 Санкт- Петербургские олимпиады по кибернетике М.С. Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев Под ред. А.Л. Фрадкова, М.С. Ананьевского. СПб: Наука, 2006

The state of the s